43 research outputs found

    Review of environmental performance of permeable pavement systems: state of the knowledge

    No full text
    Permeable pavement (PP) systems provide opportunities to mitigate the impacts of urbanization on receiving water systems by providing at source treatment and management of stormwater. However, they do not receive mainstream use throughout much of Canada and the USA because of a lack of local guidance documents, demonstration projects and performance data. Studies have repeatedly shown that PPs attenuate stormwater flows by reducing volume and frequency of stormwater flows, reducing and delaying peak flow rates, and increasing flow durations. PP systems have been shown to improve stormwater quality by reducing stormwater temperature, pollutant concentrations and pollutant loadings of suspended solids, heavy metals, polyaromatic hydrocarbons, and some nutrients. This review is intended as a comprehensive summary of the current state of knowledge of the environmental performance of PP systems. Published research is synthesized to examine the hydrologic performance, impacts to water quality, longevity and functionality and maintenance needs of PP systems. Where appropriate, the limitations of current knowledge are discussed and emerging and future research needs are presented. The intent of this review is to provide stakeholders in stormwater management with the critical information that is needed to foster acceptance of PPs as a viable alternative to traditional systems

    Measuring solids concentrations in urban runoff : methods of analysis

    No full text
    Various types of solids conveyed with rainfall and snowmelt runoff into receiving waters cause numerous environmental impacts, including reduced sunlight penetration, blanketing of fish spawning substrates, and transport of pollutants contributing to aquatic pollution. For the assessment of such impacts, it is important to measure solids concentrations in both runoff and snowmelt. In this study, accuracies of three analytical methods used to measure solids were assessed: (a) A TSS (total suspended solids) method, (b) Suspended sediment method (SSC-B), and (c) a multiple filter method (MFM). For rainfall runoff samples containing 90% of particles smaller than 5 μm, the MFM measurements produced concentrations significantly higher than those obtained with SSC-B and TSS methods, at a 95% confidence level. In the case of snowmelt runoff, the SSC-B and MFM methods yielded similar concentrations, which were 10-20% higher than those measured by the TSS method, and the coefficient of variation of repeated TSS readings was up to three times higher than that of the former methods. The results indicate the importance of choosing the “best” analytical method for assessing the operational and environmental impacts of solids conveyed by urban runoff and snowmelt.Godkänd; 2011; 20120510 (ysko

    A Data-Driven Approach to Stormwater Quality Analysis in Two Urban Catchments

    No full text
    The StormTac Web model, representing a low-complexity conceptual model (LCCM), was applied to two urban catchments featuring stormwater quality controls, a stormwater pond or a biofilter. The model calculates annual average runoff from annual precipitation and land-use specific volumetric runoff coefficients and baseflows (in storm sewers), which are multiplied by the corresponding mean stormwater quality constituent concentrations obtained from the recently upgraded StormTac Database, to yield constituent loads. The resulting runoff loads pass through the stormwater quality control facilities (a stormwater pond or a biofilter) where treatment takes place and its efficacy is described by “reduction efficiencies”. For the four selected stormwater quality constituents (TP, Cu, Zn, TSS) and two study catchments, a 201-ha residential Ladbrodammen and an 8.2-ha Sundsvall traffic corridor, the compositions of stormwater entering and leaving the control facilities were calculated by StormTac Web and compared against the measured data. In general, the calculated concentrations were smaller than the measured ones, and these differences were reduced, but not eliminated in all cases, by considering uncertainties in both calculated and measured data. Uncertainties in calculated values consisted of two components, a flow component (assumed as 20%) and a concentration component, which was assumed equal to the relative standard error (RSE) of the data in the StormTac Database. Explanations of differences in calculated and measured stormwater data were discussed with respect to temporal changes and trends in environmental practices and stormwater quality monitoring and enhancement by treatment

    Calibration event selection for green urban drainage modelling

    No full text
    Calibration of urban drainage models is typically performed based on a limited number of observed rainfall-runoff events, which may be selected from a longer time-series of measurements in different ways. In this study, 14 single- and two-stage strategies for selecting these events were tested for calibration of a SWMM model of a predominantly green urban area. The event selection was considered in relation to other sources of uncertainty such as measurement uncertainties, objective functions, and catchment discretization. Even though all 14 strategies resulted in successful model calibration, the difference between the best and worst strategies reached 0.2 in Nash–Sutcliffe Efficiency (NSE) and the calibrated parameter values notably varied. Most, but not all, calibration strategies were robust to changes in objective function, perturbations in calibration data and the use of a low spatial resolution model in the calibration phase. The various calibration strategies satisfactorily predicted 7 to 13 out of 19 validation events. The two-stage strategies performed better than the single-stage strategies when measuring performance using the Root Mean Square Error, flow volume error or peak flow error (but not using NSE); when flow data in the calibration period had been perturbed by ±40 %; and when using a lower model resolution. The two calibration strategies that performed best in the validation period were two-stage strategies. The findings in this paper show that different strategies for selecting calibration events may lead in some cases to different results for the validation period, and that calibrating impermeable and green area parameters in two separate steps may improve model performance in the validation period, while also reducing the computational demand in the calibration phase.Reliable modeling of green infrastructure in green urban catchment

    Laboratory Melting of Late-Winter Urban Snow Samples : The Magnitude and Dynamics of Releases of Heavy Metals and PAHs

    No full text
    Laboratory snow melting experiments were conducted with actual late-winter snow samples, collected just before the final snowmelt, in two similar northern Swedish cities, Luleå and Umeå, to investigate releases of the selected heavy metals (HM) (Cu, Pb, Zn, and Cd) and 16 USEPA PAHs from melting snow. Metal concentrations were determined in three fractions: total, dissolved, and truly dissolved (defined as the fraction passing through a 3-kMWCO ultrafilter). Total HM concentrations in snowmelt were rather high at both sites and reflected the accumulation of pollutants in the roadside snowbanks over a period of about 5 months: Cd = 0.43, Cu = 303, Pb = 41.9, Zn = 817 (μg/l), and TSS = 2000 (mg/l) in Luleå samples and Cd = 1.87, Cu = 905, Pb = 165, Zn = 3150 (μg/l), and TSS = 4800 (mg/l) in Umeå samples. The difference between metal and TSS concentrations at the two sites of similar characteristics was attributed to a smaller volume snowbank in Umeå. The dissolved HM concentrations represented relatively small fractions of the total concentrations (0.3–6.9% in Luleå and 0.01–3.1% in Umeå). The truly dissolved fraction represented 71–90% of the dissolved fraction in Luleå and 74–98% in Umeå. At both sites, the dissolved fractions exhibited preferential elution from the laboratory snow piles. The PAHs studied (16 US EPA PAHs) were mostly particulate bound, with only 5–12% of the total burden contributed by the meltwater, and most dissolved concentrations below the reporting limits. PAH concentrations in the Luleå samples were about one-third to one-fourth of those in Umeå. In general, the releases of PAHs from the snowbank were delayed, compared with releases of meltwater, and showed similar release patterns as TSS.Validerad;2019;Nivå 2;2019-08-20 (johcin)</p

    Estimating Pollution Loads in Snow Removed from a Port Facility : Snow Pile Sampling Strategies

    No full text
    Choosing the appropriate sampling strategy is significant while estimating the pollutant loads in a snow pile and assessing environmental impacts of dumping snow into water bodies. This paper compares different snow pile sampling strategies, looking for the most efficient way to estimate the pollutant loads in a snow pile. For this purpose, 177 snow samples were collected from nine snow piles (average pile area − 30 m2, height − 2 m) during four sampling occasions at Frihamnen, Ports of Stockholm’s port area. The measured concentrations of TSS, LOI, pH, conductivity, and heavy metals (Zn, Cu, Cd, Cr, Pb, and V) in the collected samples indicated that pollutants are not uniformly distributed in the snow piles. Pollutant loads calculated from different sampling strategies were compared against the load calculated using all samples collected for each pile (best estimate of mass load, BEML). The results/study showed that systematic grid sampling is the best choice when the objective of sampling is to estimate the pollutant loads accurately. Estimating pollutant loads from single snow column samples (collected at a point from the snow pile through the entire depth of the pile) produced up to 400% variation from BEML, whereas samples composed by mixing volume-proportional subsamples from all samples (horizontal composite samples) produced only up to 50% variation. Around nine samples were required to estimate the pollutant loads within 50% deviation from BEML for the studied snow piles. Converting pollutant concentrations in snow to equivalent concentrations in snowmelt and comparing it with available guideline values for receiving water, Zn was identified as the critical pollutant.Validerad;2021;Nivå 2;2021-02-15 (alebob)</p
    corecore